Numerical Simulations of the Warm-Hot Intergalactic Medium
نویسندگان
چکیده
منابع مشابه
Numerical simulations of the Warm-Hot Intergalactic Medium
In this paper we review the current predictions of numerical simulations for the origin and observability of the warm hot intergalactic medium (WHIM), the diffuse gas that contains up to 50 per cent of the baryons at z ∼ 0. During structure formation, gravitational accretion shocks emerging from collapsing regions gradually heat the intergalactic medium (IGM) to temperatures in the range T ∼ 10...
متن کاملBaryons in the Warm-hot Intergalactic Medium
Approximately 30− 40% of all baryons in the present day universe reside in a warm-hot intergalactic medium (WHIM), with temperatures between 10 < T < 10 K. This is a generic prediction from six hydrodynamic simulations of currently favored structure formation models having a wide variety of numerical methods, input physics, volumes, and spatial resolutions. Most of these warm-hot baryons reside...
متن کاملThe Temperature Structure of the Warm-hot Intergalactic Medium
We study the temperature structure of the intergalactic medium (IGM) using a large cosmological N -body/SPH simulation. We employ a two-temperature model for the thermal evolution of the ionized gas, in which the relaxation process between electrons and ions is explicitly included. In the diffuse, hot IGM, the relaxation time is comparable to the age of the Universe and hence the electron tempe...
متن کاملNumerical Simulations of the Intergalactic Medium
The intergalactic medium at redshifts 2–6 can be studied observationally through the absorption features it produces in the spectra of background quasars. Most of the UV-absorption lines arise in mildly overdense regions, which can be simulated reliably with current hydrodynamical simulations. Comparison of observed and simulated spectra allows one to put contraints on the model’s parameters.
متن کاملConstraining the thermal history of the Warm – Hot Intergalactic Medium
We have identified a large-scale structure traced by galaxies at z=0.8, within the Lockman Hole, by means of multi-object spectroscopic observations. By using deep XMM images we have investigated the soft X-ray emission from the Warm-Hot Intergalactic Medium (WHIM) expected to be associated with this large-scale structure and we set a tight upper limit to its flux in the very soft 0.2–0.4 keV b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Space Science Reviews
سال: 2008
ISSN: 0038-6308,1572-9672
DOI: 10.1007/s11214-008-9318-3